Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Representation Learning of EHR Data via Graph-Based Medical Entity Embedding (1910.02574v1)

Published 7 Oct 2019 in cs.LG, cs.IR, and stat.ML

Abstract: Automatic representation learning of key entities in electronic health record (EHR) data is a critical step for healthcare informatics that turns heterogeneous medical records into structured and actionable information. Here we propose ME2Vec, an algorithmic framework for learning low-dimensional vectors of the most common entities in EHR: medical services, doctors, and patients. ME2Vec leverages diverse graph embedding techniques to cater for the unique characteristic of each medical entity. Using real-world clinical data, we demonstrate the efficacy of ME2Vec over competitive baselines on disease diagnosis prediction.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.