Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 223 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Compressed Video Action Recognition with Refined Motion Vector (1910.02533v1)

Published 6 Oct 2019 in eess.IV

Abstract: Although CNN has reached satisfactory performance in image-related tasks, using CNN to process videos is much more challenging due to the enormous size of raw video streams. In this work, we propose to use motion vectors and residuals from modern video compression techniques to effectively learn the representation of the raw frames and greatly remove the temporal redundancy, giving a faster video processing model. Compressed Video Action Recognition(CoViAR) has explored to directly use compressed video to train the deep neural network, where the motion vectors were utilized to present temporal information. However, motion vector is designed for minimizing video size where precise motion information is not obligatory. Compared with optical flow, motion vectors contain noisy and unreliable motion information. Inspired by the mechanism of video compression codecs, we propose an approach to refine the motion vectors where unreliable movement will be removed while temporal information is largely reserved. We prove that replacing the original motion vector with refined one and using the same network as CoViAR has achieved state-of-art performance on the UCF-101 and HMDB-51 with negligible efficiency degrades comparing with original CoViAR.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.