Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Discovering Polarized Communities in Signed Networks (1910.02438v1)

Published 6 Oct 2019 in cs.DS and cs.SI

Abstract: Signed networks contain edge annotations to indicate whether each interaction is friendly (positive edge) or antagonistic (negative edge). The model is simple but powerful and it can capture novel and interesting structural properties of real-world phenomena. The analysis of signed networks has many applications from modeling discussions in social media, to mining user reviews, and to recommending products in e-commerce sites. In this paper we consider the problem of discovering polarized communities in signed networks. In particular, we search for two communities (subsets of the network vertices) where within communities there are mostly positive edges while across communities there are mostly negative edges. We formulate this novel problem as a "discrete eigenvector" problem, which we show to be NP-hard. We then develop two intuitive spectral algorithms: one deterministic, and one randomized with quality guarantee $\sqrt{n}$ (where $n$ is the number of vertices in the graph), tight up to constant factors. We validate our algorithms against non-trivial baselines on real-world signed networks. Our experiments confirm that our algorithms produce higher quality solutions, are much faster and can scale to much larger networks than the baselines, and are able to detect ground-truth polarized communities.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.