Papers
Topics
Authors
Recent
2000 character limit reached

A Conditional Generative Model for Predicting Material Microstructures from Processing Methods (1910.02133v1)

Published 4 Oct 2019 in eess.IV, cond-mat.mtrl-sci, cs.LG, and stat.ML

Abstract: Microstructures of a material form the bridge linking processing conditions - which can be controlled, to the material property - which is the primary interest in engineering applications. Thus a critical task in material design is establishing the processing-structure relationship, which requires domain expertise and techniques that can model the high-dimensional material microstructure. This work proposes a deep learning based approach that models the processing-structure relationship as a conditional image synthesis problem. In particular, we develop an auxiliary classifier Wasserstein GAN with gradient penalty (ACWGAN-GP) to synthesize microstructures under a given processing condition. This approach is free of feature engineering, requires modest domain knowledge and is applicable to a wide range of material systems. We demonstrate this approach using the ultra high carbon steel (UHCS) database, where each microstructure is annotated with a label describing the cooling method it was subjected to. Our results show that ACWGAN-GP can synthesize high-quality multiphase microstructures for a given cooling method.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.