Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confederated Machine Learning on Horizontally and Vertically Separated Medical Data for Large-Scale Health System Intelligence (1910.02109v3)

Published 4 Oct 2019 in cs.LG, cs.AI, and cs.CY

Abstract: Health information is generally fragmented across silos. Though it is technically feasible to unite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization. Machine learning can be conducted in a federated manner on patient datasets with the same set of variables, but separated across sites of care. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more degrees confederated machine learning. We proposed and evaluated a confederated learning to training machine learning model to stratify the risk of several diseases among when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching.

Citations (8)

Summary

We haven't generated a summary for this paper yet.