Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Memory efficient brain tumor segmentation using an autoencoder-regularized U-Net (1910.02058v1)

Published 4 Oct 2019 in eess.IV, cs.CV, and q-bio.NC

Abstract: Early diagnosis and accurate segmentation of brain tumors are imperative for successful treatment. Unfortunately, manual segmentation is time consuming, costly and despite extensive human expertise often inaccurate. Here, we present an MRI-based tumor segmentation framework using an autoencoder-regularized 3D-convolutional neural network. We trained the model on manually segmented structural T1, T1ce, T2, and Flair MRI images of 335 patients with tumors of variable severity, size and location. We then tested the model using independent data of 125 patients and successfully segmented brain tumors into three subregions: the tumor core (TC), the enhancing tumor (ET) and the whole tumor (WT). We also explored several data augmentations and preprocessing steps to improve segmentation performance. Importantly, our model was implemented on a single NVIDIA GTX1060 graphics unit and hence optimizes tumor segmentation for widely affordable hardware. In sum, we present a memory-efficient and affordable solution to tumor segmentation to support the accurate diagnostics of oncological brain pathologies.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.