Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization

Published 4 Oct 2019 in math.ST, cs.LG, math.PR, stat.ML, and stat.TH | (1910.02008v5)

Abstract: In this paper, we are concerned with a non-asymptotic analysis of sampling algorithms used in nonconvex optimization. In particular, we obtain non-asymptotic estimates in Wasserstein-1 and Wasserstein-2 distances for a popular class of algorithms called Stochastic Gradient Langevin Dynamics (SGLD). In addition, the aforementioned Wasserstein-2 convergence result can be applied to establish a non-asymptotic error bound for the expected excess risk. Crucially, these results are obtained under a local Lipschitz condition and a local dissipativity condition where we remove the uniform dependence in the data stream. We illustrate the importance of this relaxation by presenting examples from variational inference and from index tracking optimization.

Citations (40)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.