Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization (1910.02008v5)

Published 4 Oct 2019 in math.ST, cs.LG, math.PR, stat.ML, and stat.TH

Abstract: In this paper, we are concerned with a non-asymptotic analysis of sampling algorithms used in nonconvex optimization. In particular, we obtain non-asymptotic estimates in Wasserstein-1 and Wasserstein-2 distances for a popular class of algorithms called Stochastic Gradient Langevin Dynamics (SGLD). In addition, the aforementioned Wasserstein-2 convergence result can be applied to establish a non-asymptotic error bound for the expected excess risk. Crucially, these results are obtained under a local Lipschitz condition and a local dissipativity condition where we remove the uniform dependence in the data stream. We illustrate the importance of this relaxation by presenting examples from variational inference and from index tracking optimization.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com