Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

State Representation Learning from Demonstration (1910.01738v2)

Published 15 Sep 2019 in cs.LG, cs.RO, and stat.ML

Abstract: Robots could learn their own state and world representation from perception and experience without supervision. This desirable goal is the main focus of our field of interest, state representation learning (SRL). Indeed, a compact representation of such a state is beneficial to help robots grasp onto their environment for interacting. The properties of this representation have a strong impact on the adaptive capability of the agent. In this article we present an approach based on imitation learning. The idea is to train several policies that share the same representation to reproduce various demonstrations. To do so, we use a multi-head neural network with a shared state representation feeding a task-specific agent. If the demonstrations are diverse, the trained representation will eventually contain the information necessary for all tasks, while discarding irrelevant information. As such, it will potentially become a compact state representation useful for new tasks. We call this approach SRLfD (State Representation Learning from Demonstration). Our experiments confirm that when a controller takes SRLfD-based representations as input, it can achieve better performance than with other representation strategies and promote more efficient reinforcement learning (RL) than with an end-to-end RL strategy.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.