Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

GmCN: Graph Mask Convolutional Network (1910.01735v2)

Published 4 Sep 2019 in cs.CV, cs.LG, cs.SI, and stat.ML

Abstract: Graph Convolutional Networks (GCNs) have shown very powerful for graph data representation and learning tasks. Existing GCNs usually conduct feature aggregation on a fixed neighborhood graph in which each node computes its representation by aggregating the feature representations of all its neighbors which is biased by its own representation. However, this fixed aggregation strategy is not guaranteed to be optimal for GCN based graph learning and also can be affected by some graph structure noises, such as incorrect or undesired edge connections. To address these issues, we propose a novel Graph mask Convolutional Network (GmCN) in which nodes can adaptively select the optimal neighbors in their feature aggregation to better serve GCN learning. GmCN can be theoretically interpreted by a regularization framework, based on which we derive a simple update algorithm to determine the optimal mask adaptively in GmCN training process. Experiments on several datasets validate the effectiveness of GmCN.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.