Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Minimax Bounds for Distributed Logistic Regression (1910.01625v1)

Published 3 Oct 2019 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: We consider a distributed logistic regression problem where labeled data pairs $(X_i,Y_i)\in \mathbb{R}d\times{-1,1}$ for $i=1,\ldots,n$ are distributed across multiple machines in a network and must be communicated to a centralized estimator using at most $k$ bits per labeled pair. We assume that the data $X_i$ come independently from some distribution $P_X$, and that the distribution of $Y_i$ conditioned on $X_i$ follows a logistic model with some parameter $\theta\in\mathbb{R}d$. By using a Fisher information argument, we give minimax lower bounds for estimating $\theta$ under different assumptions on the tail of the distribution $P_X$. We consider both $\ell2$ and logistic losses, and show that for the logistic loss our sub-Gaussian lower bound is order-optimal and cannot be improved.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube