Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback (1910.01444v6)

Published 8 Sep 2019 in cs.SI, cs.IR, cs.LG, and stat.ML

Abstract: In most real-world recommender systems, the observed rating data are subject to selection bias, and the data are thus missing-not-at-random. Developing a method to facilitate the learning of a recommender with biased feedback is one of the most challenging problems, as it is widely known that naive approaches under selection bias often lead to suboptimal results. A well-established solution for the problem is using propensity scoring techniques. The propensity score is the probability of each data being observed, and unbiased performance estimation is possible by weighting each data by the inverse of its propensity. However, the performance of the propensity-based unbiased estimation approach is often affected by choice of the propensity estimation model or the high variance problem. To overcome these limitations, we propose a model-agnostic meta-learning method inspired by the asymmetric tri-training framework for unsupervised domain adaptation. The proposed method utilizes two predictors to generate data with reliable pseudo-ratings and another predictor to make the final predictions. In a theoretical analysis, a propensity-independent upper bound of the true performance metric is derived, and it is demonstrated that the proposed method can minimize this bound. We conduct comprehensive experiments using public real-world datasets. The results suggest that the previous propensity-based methods are largely affected by the choice of propensity models and the variance problem caused by the inverse propensity weighting. Moreover, we show that the proposed meta-learning method is robust to these issues and can facilitate in developing effective recommendations from biased explicit feedback.

Citations (101)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.