Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Escaping Saddle Points for Zeroth-order Nonconvex Optimization using Estimated Gradient Descent (1910.01277v1)

Published 3 Oct 2019 in math.OC, cs.LG, and stat.ML

Abstract: Gradient descent and its variants are widely used in machine learning. However, oracle access of gradient may not be available in many applications, limiting the direct use of gradient descent. This paper proposes a method of estimating gradient to perform gradient descent, that converges to a stationary point for general non-convex optimization problems. Beyond the first-order stationary properties, the second-order stationary properties are important in machine learning applications to achieve better performance. We show that the proposed model-free non-convex optimization algorithm returns an $\epsilon$-second-order stationary point with $\widetilde{O}(\frac{d{2+\frac{\theta}{2}}}{\epsilon{8+\theta}})$ queries of the function for any arbitrary $\theta>0$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube