Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Geometric Approach to Online Streaming Feature Selection (1910.01182v2)

Published 2 Oct 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Online Streaming Feature Selection (OSFS) is a sequential learning problem where individual features across all samples are made available to algorithms in a streaming fashion. In this work, firstly, we assert that OSFS's main assumption of having data from all the samples available at runtime is unrealistic and introduce a new setting where features and samples are streamed concurrently called OSFS with Streaming Samples (OSFS-SS). Secondly, the primary OSFS method, SAOLA utilizes an unbounded mutual information measure and requires multiple comparison steps between the stored and incoming feature sets to evaluate a feature's importance. We introduce Geometric Online Adaption, an algorithm that requires relatively less feature comparison steps and uses a bounded conditional geometric dependency measure. Our algorithm outperforms several OSFS baselines including SAOLA on a variety of datasets. We also extend SAOLA to work in the OSFS-SS setting and show that GOA continues to achieve the best results. Thirdly, the current paradigm of the OSFS algorithm comparison is flawed. Algorithms are measured by comparing the number of features used and the accuracy obtained by the learner, two properties that are fundamentally at odds with one another. Without fixing a limit on either of these properties, the qualities of features obtained by different algorithms are incomparable. We try to rectify this inconsistency by fixing the maximum number of features available to the learner and comparing algorithms in terms of their accuracy. Additionally, we characterize the behaviour of SAOLA and GOA on feature sets derived from popular deep convolutional featurizers.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.