Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An Introduction to Probabilistic Spiking Neural Networks: Probabilistic Models, Learning Rules, and Applications (1910.01059v2)

Published 2 Oct 2019 in cs.LG, cs.NE, eess.SP, and stat.ML

Abstract: Spiking neural networks (SNNs) are distributed trainable systems whose computing elements, or neurons, are characterized by internal analog dynamics and by digital and sparse synaptic communications. The sparsity of the synaptic spiking inputs and the corresponding event-driven nature of neural processing can be leveraged by energy-efficient hardware implementations, which can offer significant energy reductions as compared to conventional artificial neural networks (ANNs). The design of training algorithms lags behind the hardware implementations. Most existing training algorithms for SNNs have been designed either for biological plausibility or through conversion from pretrained ANNs via rate encoding. This article provides an introduction to SNNs by focusing on a probabilistic signal processing methodology that enables the direct derivation of learning rules by leveraging the unique time-encoding capabilities of SNNs. We adopt discrete-time probabilistic models for networked spiking neurons and derive supervised and unsupervised learning rules from first principles via variational inference. Examples and open research problems are also provided.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.