Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation of the zero-index transmission eigenvalues with a conductive boundary and parameter estimation (1910.01009v2)

Published 2 Oct 2019 in math.NA, cs.NA, and math.AP

Abstract: In this paper, we present a Spectral-Galerkin Method to approximate the zero-index transmission eigenvalues with a conductive boundary condition. This is a new eigenvalue problem derived from the scalar inverse scattering problem for an isotropic media with a conductive boundary condition. In our analysis, we will consider the equivalent fourth-order eigenvalue problem where we establish the convergence when the approximation space is the span of finitely many Dirichlet eigenfunctions for the Laplacian. We establish the convergence rate of the spectral approximation by appealing to Weyl's law. Numerical examples for computing the eigenvalues and eigenfunctions for the unit disk and unit square are presented. Lastly, we provide a method for estimating the refractive index assuming the conductivity parameter is either sufficiently large or small but otherwise unknown.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Isaac Harris (48 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.