Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximation of the zero-index transmission eigenvalues with a conductive boundary and parameter estimation (1910.01009v2)

Published 2 Oct 2019 in math.NA, cs.NA, and math.AP

Abstract: In this paper, we present a Spectral-Galerkin Method to approximate the zero-index transmission eigenvalues with a conductive boundary condition. This is a new eigenvalue problem derived from the scalar inverse scattering problem for an isotropic media with a conductive boundary condition. In our analysis, we will consider the equivalent fourth-order eigenvalue problem where we establish the convergence when the approximation space is the span of finitely many Dirichlet eigenfunctions for the Laplacian. We establish the convergence rate of the spectral approximation by appealing to Weyl's law. Numerical examples for computing the eigenvalues and eigenfunctions for the unit disk and unit square are presented. Lastly, we provide a method for estimating the refractive index assuming the conductivity parameter is either sufficiently large or small but otherwise unknown.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.