Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Training Kinetics in 15 Minutes: Large-scale Distributed Training on Videos (1910.00932v2)

Published 1 Oct 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Deep video recognition is more computationally expensive than image recognition, especially on large-scale datasets like Kinetics [1]. Therefore, training scalability is essential to handle a large amount of videos. In this paper, we study the factors that impact the training scalability of video networks. We recognize three bottlenecks, including data loading (data movement from disk to GPU), communication (data movement over networking), and computation FLOPs. We propose three design guidelines to improve the scalability: (1) fewer FLOPs and hardware-friendly operator to increase the computation efficiency; (2) fewer input frames to reduce the data movement and increase the data loading efficiency; (3) smaller model size to reduce the networking traffic and increase the networking efficiency. With these guidelines, we designed a new operator Temporal Shift Module (TSM) that is efficient and scalable for distributed training. TSM model can achieve 1.8x higher throughput compared to previous I3D models. We scale up the training of the TSM model to 1,536 GPUs, with a mini-batch of 12,288 video clips/98,304 images, without losing the accuracy. With such hardware-aware model design, we are able to scale up the training on Summit supercomputer and reduce the training time on Kinetics dataset from 49 hours 55 minutes to 14 minutes 13 seconds, achieving a top-1 accuracy of 74.0%, which is 1.6x and 2.9x faster than previous 3D video models with higher accuracy. The code and more details can be found here: http://tsm-hanlab.mit.edu.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube