Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Pre-defined Sparse Kernel Based Convolution for Deep CNNs (1910.00724v2)

Published 2 Oct 2019 in cs.CV and cs.CC

Abstract: The high demand for computational and storage resources severely impede the deployment of deep convolutional neural networks (CNNs) in limited-resource devices. Recent CNN architectures have proposed reduced complexity versions (e.g. SuffleNet and MobileNet) but at the cost of modest decreases inaccuracy. This paper proposes pSConv, a pre-defined sparse 2D kernel-based convolution, which promises significant improvements in the trade-off between complexity and accuracy for both CNN training and inference. To explore the potential of this approach, we have experimented with two widely accepted datasets, CIFAR-10 and Tiny ImageNet, in sparse variants of both the ResNet18 and VGG16 architectures. Our approach shows a parameter count reduction of up to 4.24x with modest degradation in classification accuracy relative to that of standard CNNs. Our approach outperforms a popular variant of ShuffleNet using a variant of ResNet18 with pSConv having 3x3 kernels with only four of nine elements not fixed at zero. In particular, the parameter count is reduced by 1.7x for CIFAR-10 and 2.29x for Tiny ImageNet with an increased accuracy of ~4%.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube