Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Pre-defined Sparse Kernel Based Convolution for Deep CNNs (1910.00724v2)

Published 2 Oct 2019 in cs.CV and cs.CC

Abstract: The high demand for computational and storage resources severely impede the deployment of deep convolutional neural networks (CNNs) in limited-resource devices. Recent CNN architectures have proposed reduced complexity versions (e.g. SuffleNet and MobileNet) but at the cost of modest decreases inaccuracy. This paper proposes pSConv, a pre-defined sparse 2D kernel-based convolution, which promises significant improvements in the trade-off between complexity and accuracy for both CNN training and inference. To explore the potential of this approach, we have experimented with two widely accepted datasets, CIFAR-10 and Tiny ImageNet, in sparse variants of both the ResNet18 and VGG16 architectures. Our approach shows a parameter count reduction of up to 4.24x with modest degradation in classification accuracy relative to that of standard CNNs. Our approach outperforms a popular variant of ShuffleNet using a variant of ResNet18 with pSConv having 3x3 kernels with only four of nine elements not fixed at zero. In particular, the parameter count is reduced by 1.7x for CIFAR-10 and 2.29x for Tiny ImageNet with an increased accuracy of ~4%.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.