Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Retrieving Top Weighted Triangles in Graphs (1910.00692v1)

Published 1 Oct 2019 in cs.SI and cs.DS

Abstract: Pattern counting in graphs is a fundamental primitive for many network analysis tasks, and a number of methods have been developed for scaling subgraph counting to large graphs. Many real-world networks carry a natural notion of strength of connection between nodes, which are often modeled by a weighted graph, but existing scalable graph algorithms for pattern mining are designed for unweighted graphs. Here, we develop a suite of deterministic and random sampling algorithms that enable the fast discovery of the 3-cliques (triangles) with the largest weight in a graph, where weight is measured by a generalized mean of a triangle's edges. For example, one of our proposed algorithms can find the top-1000 weighted triangles of a weighted graph with billions of edges in thirty seconds on a commodity server, which is orders of magnitude faster than existing "fast" enumeration schemes. Our methods thus open the door towards scalable pattern mining in weighted graphs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com