Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CWAE-IRL: Formulating a supervised approach to Inverse Reinforcement Learning problem (1910.00584v1)

Published 2 Oct 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Inverse reinforcement learning (IRL) is used to infer the reward function from the actions of an expert running a Markov Decision Process (MDP). A novel approach using variational inference for learning the reward function is proposed in this research. Using this technique, the intractable posterior distribution of the continuous latent variable (the reward function in this case) is analytically approximated to appear to be as close to the prior belief while trying to reconstruct the future state conditioned on the current state and action. The reward function is derived using a well-known deep generative model known as Conditional Variational Auto-encoder (CVAE) with Wasserstein loss function, thus referred to as Conditional Wasserstein Auto-encoder-IRL (CWAE-IRL), which can be analyzed as a combination of the backward and forward inference. This can then form an efficient alternative to the previous approaches to IRL while having no knowledge of the system dynamics of the agent. Experimental results on standard benchmarks such as objectworld and pendulum show that the proposed algorithm can effectively learn the latent reward function in complex, high-dimensional environments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)