Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Minimization of Random Hypergraphs (1910.00308v3)

Published 1 Oct 2019 in cs.DM, cs.DS, math.CO, and math.PR

Abstract: We investigate the maximum-entropy model $\mathcal{B}{n,m,p}$ for random $n$-vertex, $m$-edge multi-hypergraphs with expected edge size $pn$. We show that the expected size of the minimization of $\mathcal{B}{n,m,p}$, i.e., the number of its inclusion-wise minimal edges, undergoes a phase transition with respect to $m$. If $m$ is at most $1/(1-p){(1-p)n}$, then the minimization is of size $\Theta(m)$. Beyond that point, for $\alpha$ such that $m = 1/(1-p){\alpha n}$ and $\mathrm{H}$ being the entropy function, it is $\Theta(1) \cdot \min!\left(1, \, \frac{1}{(\alpha\,{-}\,(1-p)) \sqrt{(1\,{-}\,\alpha) n}}\right) \cdot 2{(\mathrm{H}(\alpha) + (1-\alpha) \log_2 p) n}.$ This implies that the maximum expected size over all $m$ is $\Theta((1+p)n/\sqrt{n})$. Our structural findings have algorithmic implications for minimizing an input hypergraph, which in turn has applications in the profiling of relational databases as well as for the Orthogonal Vectors problem studied in fine-grained complexity. The main technical tool is an improvement of the Chernoff--Hoeffding inequality, which we make tight up to constant factors. We show that for a binomial variable $X \sim \mathrm{Bin}(n,p)$ and real number $0 < x \le p$, it holds that $\mathrm{P}[X \le xn] = \Theta(1) \cdot \min!\left(1, \, \frac{1}{(p-x) \sqrt{xn}}\right) \cdot 2{-!\mathrm{D}(x \,{|}\, p) n}$, where $\mathrm{D}$ denotes the Kullback--Leibler divergence between Bernoulli distributions. The result remains true if $x$ depends on $n$ as long as it is bounded away from $0$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.