Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Minimization of Random Hypergraphs (1910.00308v3)

Published 1 Oct 2019 in cs.DM, cs.DS, math.CO, and math.PR

Abstract: We investigate the maximum-entropy model $\mathcal{B}{n,m,p}$ for random $n$-vertex, $m$-edge multi-hypergraphs with expected edge size $pn$. We show that the expected size of the minimization of $\mathcal{B}{n,m,p}$, i.e., the number of its inclusion-wise minimal edges, undergoes a phase transition with respect to $m$. If $m$ is at most $1/(1-p){(1-p)n}$, then the minimization is of size $\Theta(m)$. Beyond that point, for $\alpha$ such that $m = 1/(1-p){\alpha n}$ and $\mathrm{H}$ being the entropy function, it is $\Theta(1) \cdot \min!\left(1, \, \frac{1}{(\alpha\,{-}\,(1-p)) \sqrt{(1\,{-}\,\alpha) n}}\right) \cdot 2{(\mathrm{H}(\alpha) + (1-\alpha) \log_2 p) n}.$ This implies that the maximum expected size over all $m$ is $\Theta((1+p)n/\sqrt{n})$. Our structural findings have algorithmic implications for minimizing an input hypergraph, which in turn has applications in the profiling of relational databases as well as for the Orthogonal Vectors problem studied in fine-grained complexity. The main technical tool is an improvement of the Chernoff--Hoeffding inequality, which we make tight up to constant factors. We show that for a binomial variable $X \sim \mathrm{Bin}(n,p)$ and real number $0 < x \le p$, it holds that $\mathrm{P}[X \le xn] = \Theta(1) \cdot \min!\left(1, \, \frac{1}{(p-x) \sqrt{xn}}\right) \cdot 2{-!\mathrm{D}(x \,{|}\, p) n}$, where $\mathrm{D}$ denotes the Kullback--Leibler divergence between Bernoulli distributions. The result remains true if $x$ depends on $n$ as long as it is bounded away from $0$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.