Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Adaptive Sampling Approach for the Reduced Basis Method (1910.00298v2)

Published 1 Oct 2019 in math.NA and cs.NA

Abstract: The offline time of the reduced basis method can be very long given a large training set of parameter samples. This usually happens when the system has more than two independent parameters. On the other hand, if the training set includes fewer parameter samples, the greedy algorithm might produce a reduced-order model with large errors at the samples outside of the training set. We introduce a method based on a surrogate error model to efficiently sample the parameter domain such that the training set is adaptively updated starting from a coarse set with a small number of parameter samples. A sharp a posteriori error estimator is evaluated on a coarse training set. Radial Basis Functions are used to interpolate the error estimator over a separate fine training set. Points from the fine training set are added into the coarse training set at every iteration based on a user defined criterion. In parallel, parameter samples satisfying a defined tolerance are adaptively removed from the coarse training set. The approach is shown to avoid high computational costs by using a small training set and to provide a reduced-order model with guaranteed accuracy over a fine training set. Further, we show numerical evidence that the reduced-order model meets the defined tolerance over an independently sampled test set from the parameter domain.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.