Papers
Topics
Authors
Recent
2000 character limit reached

Generalization in Generation: A closer look at Exposure Bias (1910.00292v2)

Published 1 Oct 2019 in cs.LG, cs.CL, and stat.ML

Abstract: Exposure bias refers to the train-test discrepancy that seemingly arises when an autoregressive generative model uses only ground-truth contexts at training time but generated ones at test time. We separate the contributions of the model and the learning framework to clarify the debate on consequences and review proposed counter-measures. In this light, we argue that generalization is the underlying property to address and propose unconditional generation as its fundamental benchmark. Finally, we combine latent variable modeling with a recent formulation of exploration in reinforcement learning to obtain a rigorous handling of true and generated contexts. Results on language modeling and variational sentence auto-encoding confirm the model's generalization capability.

Citations (79)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.