Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

ARCHITECT: Arbitrary-precision Hardware with Digit Elision for Efficient Iterative Compute (1910.00271v1)

Published 1 Oct 2019 in cs.AR

Abstract: Many algorithms feature an iterative loop that converges to the result of interest. The numerical operations in such algorithms are generally implemented using finite-precision arithmetic, either fixed- or floating-point, most of which operate least-significant digit first. This results in a fundamental problem: if, after some time, the result has not converged, is this because we have not run the algorithm for enough iterations or because the arithmetic in some iterations was insufficiently precise? There is no easy way to answer this question, so users will often over-budget precision in the hope that the answer will always be to run for a few more iterations. We propose a fundamentally new approach: with the appropriate arithmetic able to generate results from most-significant digit first, we show that fixed compute-area hardware can be used to calculate an arbitrary number of algorithmic iterations to arbitrary precision, with both precision and approximant index increasing in lockstep. Consequently, datapaths constructed following our principles demonstrate efficiency over their traditional arithmetic equivalents where the latter's precisions are either under- or over-budgeted for the computation of a result to a particular accuracy. Use of most-significant digit-first arithmetic additionally allows us to declare certain digits to be stable at runtime, avoiding their recalculation in subsequent iterations and thereby increasing performance and decreasing memory footprints. Versus arbitrary-precision iterative solvers without the optimisations we detail herein, we achieve up-to 16$\times$ performance speedups and 1.9x memory savings for the evaluated benchmarks.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.