Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Noisy Guesses (1910.00215v1)

Published 1 Oct 2019 in cs.IT and math.IT

Abstract: We consider the problem of guessing a random, finite-alphabet, secret $n$-vector, where the guesses are transmitted via a noisy channel. We provide a single-letter formula for the best achievable exponential growth rate of the $\rho$--th moment of the number of guesses, as a function of $n$. This formula exhibits a fairly clear insight concerning the penalty due to the noise. We describe two different randomized schemes that achieve the optimal guessing exponent. One of them is fully universal in the sense of being independent of source (that governs the vector to be guessed), the channel (that corrupts the guesses), and the moment power $\rho$. Interestingly, it turns out that, in general, the optimal guessing exponent function exhibits a phase transition when it is examined either as a function of the channel parameters, or as a function of $\rho$: as long as the channel is not too distant (in a certain sense to be defined precisely) from the identity channel (i.e., the clean channel), or equivalently, as long $\rho$ is larger than a certain critical value, $\rho_{\mbox{\tiny c}}$, there is no penalty at all in the guessing exponent, compared to the case of noiseless guessing.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)