Papers
Topics
Authors
Recent
2000 character limit reached

Positive and free energy satisfying schemes for diffusion with interaction potentials (1910.00151v1)

Published 30 Sep 2019 in math.NA and cs.NA

Abstract: In this paper, we design and analyze second order positive and free energy satisfying schemes for solving diffusion equations with interaction potentials. The semi-discrete scheme is shown to conserve mass, preserve solution positivity, and satisfy a discrete free energy dissipation law for nonuniform meshes. These properties for the fully-discrete scheme (first order in time) remain preserved without a strict restriction on time steps. For the fully second order (in both time and space) scheme, we use a local scaling limiter to restore solution positivity when necessary. It is proved that such limiter does not destroy the second order accuracy. In addition, these schemes are easy to implement, and efficient in simulations over long time. Both one and two dimensional numerical examples are presented to demonstrate the performance of these schemes.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.