Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A mixed discontinuous Galerkin method without interior penalty for time-dependent fourth order problems (1910.00085v1)

Published 30 Sep 2019 in math.NA and cs.NA

Abstract: A novel discontinuous Galerkin (DG) method is developed to solve time-dependent bi-harmonic type equations involving fourth derivatives in one and multiple space dimensions. We present the spatial DG discretization based on a mixed formulation and central interface numerical fluxes so that the resulting semi-discrete schemes are $L2$ stable even without interior penalty. For time discretization, we use Crank-Nicolson so that the resulting scheme is unconditionally stable and second order in time. We present the optimal $L2$ error estimate of $O(h{k+1})$ for polynomials of degree $k$ for semi-discrete DG schemes, and the $L2$ error of $O(h{k+1} +(\Delta t)2)$ for fully discrete DG schemes. Extensions to more general fourth order partial differential equations and cases with non-homogeneous boundary conditions are provided. Numerical results are presented to verify the stability and accuracy of the schemes. Finally, an application to the one-dimensional Swift-Hohenberg equation endowed with a decay free energy is presented.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.