Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Black-box Adversarial Attacks with Bayesian Optimization (1909.13857v1)

Published 30 Sep 2019 in cs.LG and stat.ML

Abstract: We focus on the problem of black-box adversarial attacks, where the aim is to generate adversarial examples using information limited to loss function evaluations of input-output pairs. We use Bayesian optimization~(BO) to specifically cater to scenarios involving low query budgets to develop query efficient adversarial attacks. We alleviate the issues surrounding BO in regards to optimizing high dimensional deep learning models by effective dimension upsampling techniques. Our proposed approach achieves performance comparable to the state of the art black-box adversarial attacks albeit with a much lower average query count. In particular, in low query budget regimes, our proposed method reduces the query count up to $80\%$ with respect to the state of the art methods.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.