Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Optimal Differential Privacy Composition for Exponential Mechanisms and the Cost of Adaptivity (1909.13830v2)

Published 30 Sep 2019 in cs.CR and cs.DS

Abstract: Composition is one of the most important properties of differential privacy (DP), as it allows algorithm designers to build complex private algorithms from DP primitives. We consider precise composition bounds of the overall privacy loss for exponential mechanisms, one of the fundamental classes of mechanisms in DP. We give explicit formulations of the optimal privacy loss for both the adaptive and non-adaptive settings. For the non-adaptive setting in which each mechanism has the same privacy parameter, we give an efficiently computable formulation of the optimal privacy loss. Furthermore, we show that there is a difference in the privacy loss when the exponential mechanism is chosen adaptively versus non-adaptively. To our knowledge, it was previously unknown whether such a gap existed for any DP mechanisms with fixed privacy parameters, and we demonstrate the gap for a widely used class of mechanism in a natural setting. We then improve upon the best previously known upper bounds for adaptive composition of exponential mechanisms with efficiently computable formulations and show the improvement.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.