Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Retrieval-based Goal-Oriented Dialogue Generation (1909.13717v1)

Published 30 Sep 2019 in cs.CL and cs.LG

Abstract: Most research on dialogue has focused either on dialogue generation for openended chit chat or on state tracking for goal-directed dialogue. In this work, we explore a hybrid approach to goal-oriented dialogue generation that combines retrieval from past history with a hierarchical, neural encoder-decoder architecture. We evaluate this approach in the customer support domain using the Multiwoz dataset (Budzianowski et al., 2018). We show that adding this retrieval step to a hierarchical, neural encoder-decoder architecture leads to significant improvements, including responses that are rated more appropriate and fluent by human evaluators. Finally, we compare our retrieval-based model to various semantically conditioned models explicitly using past dialog act information, and find that our proposed model is competitive with the current state of the art (Chen et al., 2019), while not requiring explicit labels about past machine acts.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.