Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Automated Patch Assessment for Program Repair at Scale (1909.13694v3)

Published 30 Sep 2019 in cs.SE

Abstract: In this paper, we do automatic correctness assessment for patches generated by program repair systems. We consider the human-written patch as ground truth oracle and randomly generate tests based on it, a technique proposed by Shamshiri et al., called Random testing with Ground Truth (RGT) in this paper. We build a curated dataset of 638 patches for Defects4J generated by 14 state-of-the-art repair systems, we evaluate automated patch assessment on this dataset. The results of this study are novel and significant: First, we improve the state of the art performance of automatic patch assessment with RGT by 190% by improving the oracle; Second, we show that RGT is reliable enough to help scientists to do overfitting analysis when they evaluate program repair systems; Third, we improve the external validity of the program repair knowledge with the largest study ever.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.