Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

MGHRL: Meta Goal-generation for Hierarchical Reinforcement Learning (1909.13607v4)

Published 30 Sep 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Most meta reinforcement learning (meta-RL) methods learn to adapt to new tasks by directly optimizing the parameters of policies over primitive action space. Such algorithms work well in tasks with relatively slight difference. However, when the task distribution becomes wider, it would be quite inefficient to directly learn such a meta-policy. In this paper, we propose a new meta-RL algorithm called Meta Goal-generation for Hierarchical RL (MGHRL). Instead of directly generating policies over primitive action space for new tasks, MGHRL learns to generate high-level meta strategies over subgoals given past experience and leaves the rest of how to achieve subgoals as independent RL subtasks. Our empirical results on several challenging simulated robotics environments show that our method enables more efficient and generalized meta-learning from past experience.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube