Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Distributed SGD Generalizes Well Under Asynchrony (1909.13391v1)

Published 29 Sep 2019 in stat.ML, cs.DC, and cs.LG

Abstract: The performance of fully synchronized distributed systems has faced a bottleneck due to the big data trend, under which asynchronous distributed systems are becoming a major popularity due to their powerful scalability. In this paper, we study the generalization performance of stochastic gradient descent (SGD) on a distributed asynchronous system. The system consists of multiple worker machines that compute stochastic gradients which are further sent to and aggregated on a common parameter server to update the variables, and the communication in the system suffers from possible delays. Under the algorithm stability framework, we prove that distributed asynchronous SGD generalizes well given enough data samples in the training optimization. In particular, our results suggest to reduce the learning rate as we allow more asynchrony in the distributed system. Such adaptive learning rate strategy improves the stability of the distributed algorithm and reduces the corresponding generalization error. Then, we confirm our theoretical findings via numerical experiments.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.