Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning to Align Multi-Camera Domains using Part-Aware Clustering for Unsupervised Video Person Re-Identification (1909.13248v4)

Published 29 Sep 2019 in cs.CV

Abstract: Most video person re-identification (re-ID) methods are mainly based on supervised learning, which requires cross-camera ID labeling. Since the cost of labeling increases dramatically as the number of cameras increases, it is difficult to apply the re-identification algorithm to a large camera network. In this paper, we address the scalability issue by presenting deep representation learning without ID information across multiple cameras. Technically, we train neural networks to generate both ID-discriminative and camera-invariant features. To achieve the ID discrimination ability of the embedding features, we maximize feature distances between different person IDs within a camera by using a metric learning approach. At the same time, considering each camera as a different domain, we apply adversarial learning across multiple camera domains for generating camera-invariant features. We also propose a part-aware adaptation module, which effectively performs multi-camera domain invariant feature learning in different spatial regions. We carry out comprehensive experiments on three public re-ID datasets (i.e., PRID-2011, iLIDS-VID, and MARS). Our method outperforms state-of-the-art methods by a large margin of about 20\% in terms of rank-1 accuracy on the large-scale MARS dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube