Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning to Align Multi-Camera Domains using Part-Aware Clustering for Unsupervised Video Person Re-Identification (1909.13248v4)

Published 29 Sep 2019 in cs.CV

Abstract: Most video person re-identification (re-ID) methods are mainly based on supervised learning, which requires cross-camera ID labeling. Since the cost of labeling increases dramatically as the number of cameras increases, it is difficult to apply the re-identification algorithm to a large camera network. In this paper, we address the scalability issue by presenting deep representation learning without ID information across multiple cameras. Technically, we train neural networks to generate both ID-discriminative and camera-invariant features. To achieve the ID discrimination ability of the embedding features, we maximize feature distances between different person IDs within a camera by using a metric learning approach. At the same time, considering each camera as a different domain, we apply adversarial learning across multiple camera domains for generating camera-invariant features. We also propose a part-aware adaptation module, which effectively performs multi-camera domain invariant feature learning in different spatial regions. We carry out comprehensive experiments on three public re-ID datasets (i.e., PRID-2011, iLIDS-VID, and MARS). Our method outperforms state-of-the-art methods by a large margin of about 20\% in terms of rank-1 accuracy on the large-scale MARS dataset.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube