Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

How to Evaluate Machine Learning Approaches for Combinatorial Optimization: Application to the Travelling Salesman Problem (1909.13121v1)

Published 28 Sep 2019 in cs.AI and cs.LG

Abstract: Combinatorial optimization is the field devoted to the study and practice of algorithms that solve NP-hard problems. As Machine Learning (ML) and deep learning have popularized, several research groups have started to use ML to solve combinatorial optimization problems, such as the well-known Travelling Salesman Problem (TSP). Based on deep (reinforcement) learning, new models and architecture for the TSP have been successively developed and have gained increasing performances. At the time of writing, state-of-the-art models provide solutions to TSP instances of 100 cities that are roughly 1.33% away from optimal solutions. However, despite these apparently positive results, the performances remain far from those that can be achieved using a specialized search procedure. In this paper, we address the limitations of ML approaches for solving the TSP and investigate two fundamental questions: (1) how can we measure the level of accuracy of the pure ML component of such methods; and (2) what is the impact of a search procedure plugged inside a ML model on the performances? To answer these questions, we propose a new metric, ratio of optimal decisions (ROD), based on a fair comparison with a parametrized oracle, mimicking a ML model with a controlled accuracy. All the experiments are carried out on four state-of-the-art ML approaches dedicated to solve the TSP. Finally, we made ROD open-source in order to ease future research in the field.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube