Papers
Topics
Authors
Recent
2000 character limit reached

Imitation Learning Based on Bilateral Control for Human-Robot Cooperation (1909.13018v6)

Published 28 Sep 2019 in cs.RO

Abstract: Robots are required to autonomously respond to changing situations. Imitation learning is a promising candidate for achieving generalization performance, and extensive results have been demonstrated in object manipulation. However, cooperative work between humans and robots is still a challenging issue because robots must control dynamic interactions among themselves, humans, and objects. Furthermore, it is difficult to follow subtle perturbations that may occur among coworkers. In this study, we find that cooperative work can be accomplished by imitation learning using bilateral control. Thanks to bilateral control, which can extract response values and command values independently, human skills to control dynamic interactions can be extracted. Then, the task of serving food is considered. The experimental results clearly demonstrate the importance of force control, and the dynamic interactions can be controlled by the inferred action force.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.