Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Membership Encoding: Inference Attacks and Copyright Protection for Deep Learning (1909.12982v2)

Published 27 Sep 2019 in cs.LG, cs.CR, and stat.ML

Abstract: Machine learning as a service (MLaaS), and algorithm marketplaces are on a rise. Data holders can easily train complex models on their data using third party provided learning codes. Training accurate ML models requires massive labeled data and advanced learning algorithms. The resulting models are considered as intellectual property of the model owners and their copyright should be protected. Also, MLaaS needs to be trusted not to embed secret information about the training data into the model, such that it could be later retrieved when the model is deployed. In this paper, we present \emph{membership encoding} for training deep neural networks and encoding the membership information, i.e. whether a data point is used for training, for a subset of training data. Membership encoding has several applications in different scenarios, including robust watermarking for model copyright protection, and also the risk analysis of stealthy data embedding privacy attacks. Our encoding algorithm can determine the membership of significantly redacted data points, and is also robust to model compression and fine-tuning. It also enables encoding a significant fraction of the training set, with negligible drop in the model's prediction accuracy.

Citations (5)

Summary

We haven't generated a summary for this paper yet.