Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

End-to-End Deep Residual Learning with Dilated Convolutions for Myocardial Infarction Detection and Localization (1909.12923v1)

Published 15 Sep 2019 in eess.IV and cs.CV

Abstract: In this report, I investigate the use of end-to-end deep residual learning with dilated convolutions for myocardial infarction (MI) detection and localization from electrocardiogram (ECG) signals. Although deep residual learning has already been applied to MI detection and localization, I propose a more accurate system that distinguishes among a higher number (i.e., six) of MI locations. Inspired by speech waveform processing with neural networks, I found a more robust front-end than directly arranging the multi-lead ECG signal into an input matrix consisting of the use of a single one-dimensional convolutional layer per ECG lead to extract a pseudo-time-frequency representation and create a compact and discriminative input feature volume. As a result, I end up with a system achieving an MI detection and localization accuracy of 99.99% on the well-known Physikalisch-Technische Bundesanstalt (PTB) database.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)