Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative analysis of Matthew effect and sparsity problem of recommender systems (1909.12798v1)

Published 24 Sep 2019 in cs.IR and cs.LG

Abstract: Recommender systems have received great commercial success. Recommendation has been used widely in areas such as e-commerce, online music FM, online news portal, etc. However, several problems related to input data structure pose serious challenge to recommender system performance. Two of these problems are Matthew effect and sparsity problem. Matthew effect heavily skews recommender system output towards popular items. Data sparsity problem directly affects the coverage of recommendation result. Collaborative filtering is a simple benchmark ubiquitously adopted in the industry as the baseline for recommender system design. Understanding the underlying mechanism of collaborative filtering is crucial for further optimization. In this paper, we do a thorough quantitative analysis on Matthew effect and sparsity problem in the particular context setting of collaborative filtering. We compare the underlying mechanism of user-based and item-based collaborative filtering and give insight to industrial recommender system builders.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hao Wang (1124 papers)
  2. Zonghu Wang (2 papers)
  3. Weishi Zhang (4 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.