Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Urban Sound Tagging using Convolutional Neural Networks (1909.12699v1)

Published 27 Sep 2019 in cs.SD, cs.LG, and eess.AS

Abstract: In this paper, we propose a framework for environmental sound classification in a low-data context (less than 100 labeled examples per class). We show that using pre-trained image classification models along with the usage of data augmentation techniques results in higher performance over alternative approaches. We applied this system to the task of Urban Sound Tagging, part of the DCASE 2019. The objective was to label different sources of noise from raw audio data. A modified form of MobileNetV2, a convolutional neural network (CNN) model was trained to classify both coarse and fine tags jointly. The proposed model uses log-scaled Mel-spectrogram as the representation format for the audio data. Mixup, Random erasing, scaling, and shifting are used as data augmentation techniques. A second model that uses scaled labels was built to account for human errors in the annotations. The proposed model achieved the first rank on the leaderboard with Micro-AUPRC values of 0.751 and 0.860 on fine and coarse tags, respectively.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)