Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

"Best-of-Many-Samples" Distribution Matching (1909.12598v1)

Published 27 Sep 2019 in cs.LG and stat.ML

Abstract: Generative Adversarial Networks (GANs) can achieve state-of-the-art sample quality in generative modelling tasks but suffer from the mode collapse problem. Variational Autoencoders (VAE) on the other hand explicitly maximize a reconstruction-based data log-likelihood forcing it to cover all modes, but suffer from poorer sample quality. Recent works have proposed hybrid VAE-GAN frameworks which integrate a GAN-based synthetic likelihood to the VAE objective to address both the mode collapse and sample quality issues, with limited success. This is because the VAE objective forces a trade-off between the data log-likelihood and divergence to the latent prior. The synthetic likelihood ratio term also shows instability during training. We propose a novel objective with a "Best-of-Many-Samples" reconstruction cost and a stable direct estimate of the synthetic likelihood. This enables our hybrid VAE-GAN framework to achieve high data log-likelihood and low divergence to the latent prior at the same time and shows significant improvement over both hybrid VAE-GANS and plain GANs in mode coverage and quality.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.