Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning (1909.12552v1)

Published 27 Sep 2019 in stat.ML and cs.LG

Abstract: Bayesian optimization (BO) is a successful methodology to optimize black-box functions that are expensive to evaluate. While traditional methods optimize each black-box function in isolation, there has been recent interest in speeding up BO by transferring knowledge across multiple related black-box functions. In this work, we introduce a method to automatically design the BO search space by relying on evaluations of previous black-box functions. We depart from the common practice of defining a set of arbitrary search ranges a priori by considering search space geometries that are learned from historical data. This simple, yet effective strategy can be used to endow many existing BO methods with transfer learning properties. Despite its simplicity, we show that our approach considerably boosts BO by reducing the size of the search space, thus accelerating the optimization of a variety of black-box optimization problems. In particular, the proposed approach combined with random search results in a parameter-free, easy-to-implement, robust hyperparameter optimization strategy. We hope it will constitute a natural baseline for further research attempting to warm-start BO.

Citations (90)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.