Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An agglomerative hierarchical clustering method by optimizing the average silhouette width (1909.12356v1)

Published 26 Sep 2019 in stat.ME and cs.LG

Abstract: An agglomerative hierarchical clustering (AHC) framework and algorithm named HOSil based on a new linkage metric optimized by the average silhouette width (ASW) index is proposed. A conscientious investigation of various clustering methods and estimation indices is conducted across a diverse verities of data structures for three aims: a) clustering quality, b) clustering recovery, and c) estimation of number of clusters. HOSil has shown better clustering quality for a range of artificial and real world data structures as compared to k-means, PAM, single, complete, average, Ward, McQuitty, spectral, model-based, and several estimation methods. It can identify clusters of various shapes including spherical, elongated, relatively small sized clusters, clusters coming from different distributions including uniform, t, gamma and others. HOSil has shown good recovery for correct determination of the number of clusters. For some data structures only HOSil was able to identify the correct number of clusters.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.