Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards neural networks that provably know when they don't know (1909.12180v2)

Published 26 Sep 2019 in cs.LG, cs.CV, and stat.ML

Abstract: It has recently been shown that ReLU networks produce arbitrarily over-confident predictions far away from the training data. Thus, ReLU networks do not know when they don't know. However, this is a highly important property in safety critical applications. In the context of out-of-distribution detection (OOD) there have been a number of proposals to mitigate this problem but none of them are able to make any mathematical guarantees. In this paper we propose a new approach to OOD which overcomes both problems. Our approach can be used with ReLU networks and provides provably low confidence predictions far away from the training data as well as the first certificates for low confidence predictions in a neighborhood of an out-distribution point. In the experiments we show that state-of-the-art methods fail in this worst-case setting whereas our model can guarantee its performance while retaining state-of-the-art OOD performance.

Citations (129)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.