Papers
Topics
Authors
Recent
2000 character limit reached

Deep Model Transferability from Attribution Maps (1909.11902v2)

Published 26 Sep 2019 in cs.CV

Abstract: Exploring the transferability between heterogeneous tasks sheds light on their intrinsic interconnections, and consequently enables knowledge transfer from one task to another so as to reduce the training effort of the latter. In this paper, we propose an embarrassingly simple yet very efficacious approach to estimating the transferability of deep networks, especially those handling vision tasks. Unlike the seminal work of taskonomy that relies on a large number of annotations as supervision and is thus computationally cumbersome, the proposed approach requires no human annotations and imposes no constraints on the architectures of the networks. This is achieved, specifically, via projecting deep networks into a model space, wherein each network is treated as a point and the distances between two points are measured by deviations of their produced attribution maps. The proposed approach is several-magnitude times faster than taskonomy, and meanwhile preserves a task-wise topological structure highly similar to the one obtained by taskonomy. Code is available at https://github.com/zju-vipa/TransferbilityFromAttributionMaps.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.