Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Crash dynamics of interdependent networks (1909.11834v1)

Published 26 Sep 2019 in physics.soc-ph and cs.SI

Abstract: The emergence and evolution of real-world systems have been extensively studied in the last few years. However, equally important phenomena are related to the dynamics of systems' collapse, which has been less explored, especially when they can be cast into interdependent systems. In this paper, we develop a dynamical model that allows scrutinizing the collapse of systems composed of two interdependent networks. Specifically, we explore the dynamics of the system's collapse under two scenarios: in the first one, the condition for failure should be satisfied for the focal node as well as for its corresponding node in the other network; while in the second one, it is enough that failure of one of the nodes occurs in either of the two networks. We report extensive numerical simulations of the dynamics performed in different setups of interdependent networks, and analyze how the system behavior depends on the previous scenarios as well as on the topology of the interdependent system. Our results can provide valuable insights into the crashing dynamics and evolutionary properties of interdependent complex systems.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.