Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data Valuation using Reinforcement Learning (1909.11671v1)

Published 25 Sep 2019 in cs.LG and stat.ML

Abstract: Quantifying the value of data is a fundamental problem in machine learning. Data valuation has multiple important use cases: (1) building insights about the learning task, (2) domain adaptation, (3) corrupted sample discovery, and (4) robust learning. To adaptively learn data values jointly with the target task predictor model, we propose a meta learning framework which we name Data Valuation using Reinforcement Learning (DVRL). We employ a data value estimator (modeled by a deep neural network) to learn how likely each datum is used in training of the predictor model. We train the data value estimator using a reinforcement signal of the reward obtained on a small validation set that reflects performance on the target task. We demonstrate that DVRL yields superior data value estimates compared to alternative methods across different types of datasets and in a diverse set of application scenarios. The corrupted sample discovery performance of DVRL is close to optimal in many regimes (i.e. as if the noisy samples were known apriori), and for domain adaptation and robust learning DVRL significantly outperforms state-of-the-art by 14.6% and 10.8%, respectively.

Citations (157)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.