Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Comparison of Artificial Intelligence Techniques for Project Conceptual Cost Prediction (1909.11637v1)

Published 8 Aug 2019 in cs.LG and cs.AI

Abstract: Developing a reliable parametric cost model at the conceptual stage of the project is crucial for projects managers and decision-makers. Existing methods, such as probabilistic and statistical algorithms have been developed for project cost prediction. However, these methods are unable to produce accurate results for conceptual cost prediction due to small and unstable data samples. AI and ML algorithms include numerous models and algorithms for supervised regression applications. Therefore, a comparison analysis for AI models is required to guide practitioners to the appropriate model. The study focuses on investigating twenty AI techniques which are conducted for cost modeling such as fuzzy logic (FL) model, artificial neural networks (ANNs), multiple regression analysis (MRA), case-based reasoning (CBR), hybrid models, and ensemble methods such as scalable boosting trees (XGBoost). Field canals improvement projects (FCIPs) are used as an actual case study to analyze the performance of the applied ML models. Out of 20 AI techniques, the results showed that the most accurate and suitable method is XGBoost with 9.091% and 0.929 based on Mean Absolute Percentage Error (MAPE) and adjusted R2. Nonlinear adaptability, handling missing values and outliers, model interpretation and uncertainty have been discussed for the twenty developed AI models. Keywords: Artificial intelligence, Machine learning, ensemble methods, XGBoost, evolutionary fuzzy rules generation, Conceptual cost, and parametric cost model.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.