Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Dynamical Gaussian Process Latent Variable Model in the Longitudinal Scenario (1909.11630v1)

Published 25 Sep 2019 in cs.LG and stat.ML

Abstract: The Dynamical Gaussian Process Latent Variable Models provide an elegant non-parametric framework for learning the low dimensional representations of the high-dimensional time-series. Real world observational studies, however, are often ill-conditioned: the observations can be noisy, not assuming the luxury of relatively complete and equally spaced like those in time series. Such conditions make it difficult to learn reasonable representations in the high dimensional longitudinal data set by way of Gaussian Process Latent Variable Model as well as other dimensionality reduction procedures. In this study, we approach the inference of Gaussian Process Dynamical Systems in Longitudinal scenario by augmenting the bound in the variational approximation to include systematic samples of the unseen observations. We demonstrate the usefulness of this approach on synthetic as well as the human motion capture data set.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)