Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Graph Neural Reasoning May Fail in Certifying Boolean Unsatisfiability (1909.11588v2)

Published 25 Sep 2019 in cs.LG, cs.LO, cs.SC, and stat.ML

Abstract: It is feasible and practically-valuable to bridge the characteristics between graph neural networks (GNNs) and logical reasoning. Despite considerable efforts and successes witnessed to solve Boolean satisfiability (SAT), it remains a mystery of GNN-based solvers for more complex predicate logic formulae. In this work, we conjectures with some evidences, that generally-defined GNNs present several limitations to certify the unsatisfiability (UNSAT) in Boolean formulae. It implies that GNNs may probably fail in learning the logical reasoning tasks if they contain proving UNSAT as the sub-problem included by most predicate logic formulae.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.