Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating design optimization using reduced order models (1909.11320v1)

Published 25 Sep 2019 in math.NA and cs.NA

Abstract: Although design optimization has shown its great power of automatizing the whole design process and providing an optimal design, using sophisticated computational models, its process can be formidable due to a computationally expensive large-scale linear system of equations to solve, associated with underlying physics models. We introduce a general reduced order model-based design optimization acceleration approach that is applicable not only to design optimization problems, but also to any PDE-constrained optimization problems. The acceleration is achieved by two techniques: i) allowing an inexact linear solve and ii) reducing the number of iterations in Krylov subspace iterative methods. The choice between two techniques are made, based on how close a current design point to an optimal point. The advantage of the acceleration approach is demonstrated in topology optimization examples, including both compliance minimization and stress-constrained problems, where it achieves a tremendous reduction and speed-up when a traditional preconditioner fails to achieve a considerable reduction in the number of linear solve iterations.

Citations (34)

Summary

We haven't generated a summary for this paper yet.